Theme: Unlock The Physics: Explore and reveal the systematic developments in Lasers, Optics & Photonics during COVID-19

Euro Optics 2020

Renowned Speakers

Euro Optics 2020

Conference Series LLC Ltd invites all the participants from all over the world to attend 13th International Conference on Optics, Photonics & Lasers during 
April 22-23, 2020 Berlin, Germany.

ThemeUnlock the Physics: Explore and reveal the systematic developments in Lasers, Optics & Photonics.

This includes prompt keynote presentations, Oral talks, Poster presentations, Exhibitions, workshops and Business to Business meetings. We invite all the speakers and Delegate from all over the country.

Aims & Scope: Photonics — the scientific study and application of light has evolved to become a key technology behind many devices found in the modern home, factory and research lab. Today, the field is both a Nobel-prize-winning science and a billion-dollar industry, underpinning applications such as fibre-optic communication, data storage, flat-panel displays and materials processing. Nature Photonics is a monthly journal dedicated to this exciting field and publishes top-quality, peer-reviewed research in all areas of light generation, manipulation and detection.

Target Audience:

  • Eminent Scientists/Research Professors in the field of lasers, Optics & photonics
  • Junior/Senior research fellows in Lasers, Optics & photonics, Students
  • Directors of Photonics companies
  • Photonics Engineers
  • Members of different Lasers, Optics and Photonics associations.

Track 1: Classical & Physical Optics

Classical optics is divided into two main branches: geometrical (or ray) optics and physical (or wave) optics. In geometrical optics, light is considered to travel in straight lines, while in physical optics, light is considered as an electromagnetic wave. Physical optics  is the study of the wave properties of light, which may be roughly grouped into three categories: interference, diffraction, and polarization And In Physical optics, light is considered to propagate as a wave. This model predicts phenomena such as interference and diffraction which are not explained by geometric optics. The speed of light waves in air is approximately 3.0×108 m/s (exactly 299,792,458 m/s in vacuum).

Track 2: Nano & Quantum Optics

Nano-optics is the study of optical phenomena and techniques on the manometer scale, that is, near or beyond the diffraction limit of light. It is an emerging field of study, motivated by the rapid advance of Nano science and nanotechnology which require adequate tools and strategies for fabrication, manipulation and characterization at this scale.In Principles of Nano-Optics the authors provide a comprehensive overview of the theoretical and experimental concepts necessary to understand and work in nano-optics. With a very broad perspective, they cover optical phenomena relevant to the nanoscale across diverse areas ranging from quantum optics to biophysics, introducing and extensively describing all of the significant methods.

Track 3: Optical Imaging and Sensing

Optical Imaging is the method in which light is being used to get the investigational imaging of the medical operations. Basically, optical imaging is of two types which are diffusive Imaging systems and ballistic imaging system. Some of the main examples are scanning laser ophthalmoscopy, optical coherence tomography, optical microscopy and endoscopy, spectroscopy.

Track 4: Photonics and its Devices

Photonics is an area of study that involves the use of radiant energy (such as light), whose fundamental element is the photon. Photonic applications use the photon in the same way that electronic applications use the electron. Devices that run on light have a number of advantages over those that use electricity.Applications of photonics: Applications of photonics are ubiquitous. Included are all areas from everyday life to the most advanced science, e.g. light detection, telecommunications, information processing, photonic computing, lighting, metrology, spectroscopy, holography, medicine (surgery, vision correction, endoscopy, health monitoring), bio photonics, military technology, laser material processing, art diagnostics (involving InfraRed , Reflectography, Xrays, UltraViolet fluorescence, XRF), agriculture, and robotics.

Track 5: Optics in Astronomy and Astrophysics

These are the optics which belong to the branch of optics and photonics which uses light controlling components to get the images of the celestial objects in the space. The perfect example for this would be a telescope.

Trach 6: Geometrical Optics

Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometric optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances. Three basic laws: The law of rectilinear propagation (transmission). ... When a ray of light is reflected at an interface dividing two optical media, the reflected ray remains within the plane of incidence, and the angle of reflection θ r equals the angle of incidence θ i.

Track 7: Principle of Interferometers

Basic Principle of Interferometer. Interferometer is a precise instrument for flow visualization. The variation of refractive index of the flowing gas with density is the basic principle used in thses system. The principle of interference of light waves is used.

  • Operation of Interferometer: Light rays from a source are collimated with a lens L1. That is, the light rays become a parallel beam of rays when they come out of the lens L1.
  • This collimated light rays are then split by a beam splitter B1. The two beams traverse at right angles to each other.
  • That is the beam   

Track 8: Lasers in Medicine 

Laser medicine consists in the use of lasers in medical diagnosis, treatments, or therapies, such as laser photodynamic therapy, photo rejuvenation, and laser surgery. While the history of laser begins in 1951, the first medical application is reported by Goldman in 1962. In cardiovascular surgery McGuff first used a Ruby-Laser in 1963 for the experimental ablation of atherosclerotic plaques. After a long time of investigations and new developments in laser technology first clinical applications were performed by Choy and Ginsburg in 1983. Since that time the effectiveness of laser angioplasty in coronary and peripheral vessel is investigated in several clinical trials and first results are encouraging, so that laser is about to find its place in the treatment of cardiovascular diseases too.

Track 9: Optical Technologies

Light, like radio, consists of electromagnetic waves. The major difference between the two is that light waves are much shorter than radio waves. The use of electromagnetic waves for long-distance communications was the beginning of an industry known first as wireless and later as radio. This industry was the foundation for electronics, which brought the world so many fascinating technologies.

Track 10: Laser and Its Types

There are four types which are: solid state, gas, dye, and semiconductor. The characteristics of each type will be described. Solid State Lasers employ a lasing material distributed in a solid matrix. One example is the Neodymium: YAG laser (Nd:YAG).

  • Solid-state laser:   A solid-state laser is a laser that uses solid as a laser medium. In these lasers, glass or crystalline materials are used
  • Gas laser: A gas laser is a laser in which an electric current is discharged through a gas inside the laser medium to produce laser light. In gas lasers, the laser medium is in the gaseous state
  • Liquid laser: A liquid laser is a laser that uses the liquid as laser medium. In liquid lasers, light supplies energy to the laser medium.
  • Semiconductor laser: Semiconductor lasers play an important role in our everyday life. These lasers are very cheap, compact size and consume low power. Semiconductor lasers are also known as laser diodes.

Track 11: Optics in Astronomy and Astrophysics

These are the optics which belong to the branch of optics and photonics which uses light controlling components to get the images of the celestial objects in the space. The perfect example for this would be a telescope.

Track 12: 3D Laser Triangulation

Laser based 3D scanners use a process called trigonometric triangulation to accurately capture a 3D shape as millions of points. Laser scanners work by projecting a laser line or multiple lines onto an object and then capturing its reflection with a single sensor or multiple sensors.

Types of 3D Scanners and 3D Scanning Technologies:

  1. Short Range 3D Scanners Short Range 3D scanners typically utilize a Laser triangulation or Structured Light technology.
  2. Laser based 3D Scanners Laser based 3D scanners use a process called trigonometric triangulation to accurately capture a 3D shape as millions of points. Laser scanners work by projecting a laser line or multiple lines onto an object and then capturing its reflection with a single sensor or multiple sensors.

Benefits of 3D Laser Scanners:

  • Able to scan tough surfaces, such as shiny or dark finishes
  • Less sensitive to changing light conditions and ambient light
  • Often more portable
  • Simpler design – easier to use and lower cost

Track 13: Silicon Photonics and ‎Organic Photonics

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems Fields within organic photonics include the liquid organic dye laser and solid-state organic dye lasers. Materials used in solid-state dye lasers include.

Advantages: Its great advantage is that it can be manufactured just like normal computer chips but with patterned silicon to transmit data-carrying laser signals. Able to carry more data while consuming less power and without heating up or causing any degradation in signal, silicon photonics will disrupt a range of technologies.

Track 14: Fiber Lasers: New Types and Features Expand Applications

Process automation is today in the largest demand on the industrial market, which must meet very high production requirements and adapt to an increasingly aggressive competitiveness, in which time often plays a fundamental role. The most important consequence of this is the search for high performance tools and technologies that can adapt to different needs. When we speak of efficiency and flexibility in the world of Laser Marking and its infinite applications, we certainly place fiber lasers in first place. In today's market, these are by far the most used in companies that use this technology.

Advantages of Fiber Lasers:

  • No accessory optical devices
  • Compactness
  • Beam quality
  • Durability  
  • Speed
  • Energy savings

Track 15: Photonic Crystal Materials and Crystallography

Photonic crystals are periodic dielectric structures that are designed to form the energy band structure for photons, which either allows or forbids the propagation of electromagnetic waves of certain frequency ranges, making them ideal for light-harvesting applications (Maka et al., 2003).

Applications:  Photonic crystals are attractive optical materials for controlling and manipulating light flow. One dimensional photonic crystal is already in widespread use, in the form of thin-film optics, with applications from low and high reflection coatings on lenses and mirrors to colour changing paints.

Track 16: Novel Materials, Nano photonics and Processes

Materials, structures, phenomena and devices that are still in an investigative stage, or that are not yet targeting specific application requirements. Novel materials and material combinations and structures that are enabling new functions or science, and nanophotonic structures. Potential examples include (not limited to) low dimensional structures, amorphous or disordered materials, graphene, complex oxides, photonic crystals, antennas, gratings, subwavelength structures, and plasmonics and their hybrids.

Track 17: Electronic-Photonic Integrated Circuits and Systems

An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material that is normally silicon. The integration of large numbers of tiny MOS transistors into a small chip results in circuits that are orders of magnitude smaller, faster, and less expensive than those constructed of discrete electronic components. The IC's mass production capability, reliability, and building-block approach to circuit design has ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones, and other digital home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs.

Track 18: Semiconductor Lasers (SL)

The subcommittee on Semiconductor Lasers solicits papers on recent advances in the design, fabrication, and characterization of laser sources based on carrier injection in semiconductor materials. Topics of interest range from stand-alone laser diodes to optical transmitters to on-chip light sources and cover all relevant spectral ranges. Different types of semiconductor lasers, including those featuring new designs, materials and processing, which target various applications, from high-power sourcing to optical sensing to optical interconnects, all are within the scope of this subcommittee, with a specific focus on:
transmitters
• On-chip laser sources for photonic integrated circuits

Track19: Laser Scienceand Laser Nanotechnology

The word LASER stands for Light Amplification by Stimulated Emission of Radiation. A laser is a device that emits a concentrated beam of photons, which are the basic units of electromagnetic radiation. The applications of laser radiation in the nanotechnology are ranging from fabrication, melting and evaporating. The combination of laser and nanotechnology in the field of cancer treatment has made a good progress over the year. There are many application of laser in the nanotechnology which will be discussed in detail in this section

Track 20: Photonic Materials and Metamaterials (PMM)

The subcommittee on photonic materials science and technology solicits papers in all aspects of photonic materials, including materials science and technology, material growth and synthesis, heterogeneous integration, material characterization, and integration architectures. The subcommittee welcomes submissions in, but not limited to, the following areas:

  • Epitaxial growth of semiconductor materials, including 2D and 3D growth processes, quantum dots and dashes, nanowires, nanotubes, nanoneedles, and other types of nanostructures, etc.
  • Novel deposition and/or growth techniques for photonic materials.
  • Structured and engineered materials systems, such as periodic and aperiodic structures, photonic crystals, plasmonics, metamaterials, and metasurfaces, etc.

Track 21: Space Photonics (SS SP)

The implementation of photonics in space presents unique functional and environmental challenges. This symposium will highlight recent efforts to develop photonic components and systems that meet growing demands for high-rate communication, accurate timing standards, precision navigation, and gathering of scientific data from low-Earth orbit to deep space.

There are almost 96 different photonics research laboratories and almost 1500 photonics companies in UK and all are emerging rapidly. The recent survey which was conducted by an agency of UK known as Photonics and Plastic Electronics Knowledge Transfer Network (PPEKTN), found that the total turnover of UK’s Photonics Industry is at least 8.8 billion dollars and employees more than 51,000 people. Strengthening the Industrial Activities in UK is one of the solid agendas of the government officials. They have introduced a board (Technology Strategy Board) whose main intension is to increase the productivity of such industries which offers greatest growth for boosting UK’s Economy. A key area was identified by the board which was a global market for consumer electronics and photonics products, which was valued at 291 billion dollars.


The report is a compilation of the existing BCC reports in laser market. The topics analysed within the report include a detailed breakdown and analysis of the global markets for lasers. The scope of this report extends to sizing of the laser market and an analysis of global market trends with market data for various types of devices at global level in 2018, which is being considered as the base year, 2019 as the estimate year and forecast for 2024 with projection of CAGR from 2019 to 2024.

The report focuses on assessment of laser devices, suppliers and an analysis of companies/ manufacturers and the related system providers. Market dynamics such as drivers, restraints, opportunities and challenges are also discussed in the report.

While this report contains a significant amount of technical information due to the inherent nature of the subject and thus provides information valuable to engineers and scientists, it is primarily aimed at business professionals in field of lasers. These may include manufacturers and their suppliers, financiers and investors, researchers with backgrounds in engineering and sciences, marketing and sales professionals, and others. This report may also prove valuable to professional analysts, investors, public policy advisors and others who are seeking a better understanding and definition of lasers market.

Fig 1: Laser Sensor Market

Global Fiber Optics

The global fiber optics market size was valued at USD 6.5 billion in 2018 and is projected to exhibit a CAGR of 4.6% from 2019 to 2025. The technology is one of the modern-day innovations, which has evolved with time, owing to rigorous studies carried out by researchers and scientists across the globe through extensive research and development. The technology has proved to be a boon across a wide range of applications and has increased the number of advancements over the time.

Fig 2.

To share your views and research, please click here to register for the Conference.

To Collaborate Scientific Professionals around the World

Conference Date April 22-23, 2020
Sponsors & Exhibitors Click here for Sponsorship Opportunities
Speaker Opportunity Closed Day 1
Poster Opportunity Closed Click Here to View