Jana Soumendu
Thapar Institute of Engineering and Technology, India
Title: Dissipative soliton in VCSEL
Biography
Biography: Jana Soumendu
Abstract
Dissipative soliton (DS) are localized structure e.g., wave and pulse in lossy systems. Such DS has been excited in form of bright spot on dark background in vertical cavity surface emitting laser (VCSEL) based models in conjugation of frequency selective feedback (FSF). These DS are popularly referred as cavity soliton (CS). DS in cavity or cavity soliton (CS) exhibits intriguing dynamics, which is supported by the large area of VCSEL. The parametric space for stabilization and control of CS has been identified. The role of system randomness, an unavoidable feature that arises from multiple parameters, has been explored. Since CS dynamics is very sensitive to the any inhomogeneity present in the system we explore the possibility to use it to design an alternate microscopy, namely, ‘soliton force microscope’. However, the size of the CS is pivotal to decide the resolution of the microscope. Emphasis has given to reduce the CS spot size. Also, we searched for the systems which can be scanned with the existing size of CS. The result may lead to design a ‘soliton force microscope’ primarily with moderate resolution. A sustained CS or CS cluster requires a stable background. We found two distinct types of CS on a stable background. This may lead to realization of three-level logic. Besides, CS may be exploited to design memory devices. An essential feature of CS is the presence of their bistability character, which can be better realized by introducing a saturable absorbing material or saturable absorber (SA) in the cavity. Generally semiconductor saturable absorber mirrors are used. We explored the potential of graphene and other 2D materials as SA in VCSEL. Particularly, graphene eases the CS generation significantly as well as upgrades the CS system as an efficient biomedical sensor. The future line of investigation is highlighted.